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Abstract

A mathematical model has been presented for analyzing the flow of micropolar
nanofluid above a convectively heated permeable stretching sheet with Cattaneo-
Christov double diffusion. The similarity transformation is utilized to change the
governing partial differential equations (PDEs) to a system of nonlinear ordinary
differential equations (ODEs). The resulting system of ODEs is sorted out mathe-
matically by utilizing the shooting method. Graphical results are exploited to view
the behavior of emerging parameters on velocity, temperature and concentration
of nanofluid. The effects of non-dimensional parameters on velocity, temperature
and concentration have been discussed with the help of graphs for both suction
and injection cases. Moreover, for comprehension, the physical presentation of
the embedded parameters, such as unsteady squeezing parameter, thermal radia-
tion parameter, thermophoresis parameter, Levis number and Prandtl number are
plotted and discussed graphically. Numerical computations are performed for the
local Sherwood and Nusselt number and skin friction coefficient and discussed in
this work. Extend the flow analysis by considering the additional effects of Cat-
taneo Christov double diffusion model with the assumptions of laminar, steady,
incompressible, two dimensional, porous stretching sheet, viscous dissipation, non-
linear thermal radiation, Joule heating with convective boundary condition. It is
observed that the electric field is dominant over the magnetic field. The behav-
ior of velocity profile is reserved in the absence of the electric field. Further, the

nonlinear thermal radiation aggregates the temperature profile.



Contents

Author’s Declaration iv
Plagiarism Undertaking v
Acknowledgement vi
Abstract vii
List of Figures X
List of Tables xii
Abbreviations xiil
Symbols Xiv
1 Introduction 1
1.1 Thesis Contributions . . . . . . . . . . . . . 4
1.2 Thesis outlines . . . . . . . . . 4
2 Preliminaries 6
2.1 Some Basic Terminologies . . . . . . ... .. ... ... ...... 6
22 Typesof Flow . . . . . . . . . .. 8
23 Typesof Fluid. . . . . ... ... ... 9
2.4 Modes of Heat Transfer . . . . . . . . . . . . . .. . ... ... ... 10
2.5 Dimensionless Number . . . . . . . . . . ... 11
26 Governing Laws . . . . . . . ..o 13
2.7 Shooting Method . . . . . . . . ... ... 15
3 Magneto-micropolar nanofluid flow over a convectively heated
sheet with non-linear radiation and viscous dissipation 18
3.1 Introduction . . . . . . . . ... 18
3.2 Problem Formulation . . . . . . . . . . . .. ... 19
3.3 Conversion of the Model . . . . . . . . . . .. ... 20
3.4 Solution Methodology . . . . . . . . . ... ... ... ... ... 38



1X

3.5 Results and Discussion . . . . . . . . . .. 43

4 The Cattaneo-Christov double diffusion model analysis of EMHD

micropolar fluid flow using nonlinear thermal radiation 58
4.1 Introduction . . . . . . . . .o 58
4.2 Problem Formulation . . . . . ... .. ... ... ... .. ..... 59
4.3 Conversion of the Model . . . . . . . . . . .. ... ... ... ... 59
4.4 Solution Methodology . . . . . . . . . ... ... ... 64
4.5 Results and Discussion . . . . . . . . ... 67
5 Conclusion 80

Bibliography 82



List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Geometry of the problem. . . . . ... ... ... ... ... .. .. 18
Influence of won f'(¢). . . . . . . ..o 47
Influence of f, on f'(¢). . . . . . .. . 47
Influence of K on f'({). . . . . . ... .. 48
Influence of Kon h(¢). . . . . . . . ... 48
Influence of M on f/(¢). . . . . . . . 49
Influence of M on 6(C). . . . . . . .. 49
Influence of vy on 6(¢). . . . . . . Lo 50
Influence of Econ 6(C). . . . .. .. ... o 50
Influence of O, on O(C). . . . . . . .. 51
Influence of P, on 0(C). . . . . . . ... 51
Influence of Nt on 6(¢). . . . . . .. ... 52
Influence of Ron 0(¢). . . . . . . .. . 52
Influence of Loon ¢(C). . . . . . . oo Lo 53
Influence of Nt on (). . . . . . . . ..o 53
Influence of Poon ¢(C). . . .« o o oo oo 54
Influence of Nbon ¢(¢). . . . . .. .. 54
Influence of o on ¢(C). . . . . . Lo 55
Influence of Nt and Nb on NuxRex—% ................. 55
Influence of Nt and Nb on the thRew—% ............... 56
Impact of on 0(C). . . . . ... 70
Impact of f, on 6(C). . . . . . . 70
Impact of K on 0(C). . . . . . . ... . 71
Impact of M on 6(C). . . . . . . ... 71
Impact of Ay on 0(C). . . . . . . 72
Impact of Nt on 6(C). . . . . . .. . o 72
Impact of Pron 6(C).. . . . . . ... o 73
Impact of Nbon 0(C). . . . .. ... . 73
Impact of vy on 0(C). . . . . . . .o 74
Impact of Le on ¢(C). . . . . .« o o oL 74
Impact of Nt on ¢(C). . . .« . oo oo 75
Impact of Econ ¢(C). . . . . . . .. 75
Impact of Acon ¢(C). . . . . . .o 76
Impact of Pron ¢(C). . . .« o oo o 76



x1

4.15 ITmpact of Nbon ¢(C). . . . . . . o

4.16 Tmpact of 75 on ¢(¢)



List of Tables

3.1
3.2

3.3

4.1

4.2

Results of (Rex)%%Cf for various parameters . . . . . ... ... .. 44
Results of Nu(Re,) 2 and Sh(Re,)"2 when K = 0.2, E = 0.2,
Fo=01,a=14n=05 N, =02 Lo=12,7 =7% =01 . ... 45
Results of Nu(Re,)"2 and Sh(Rey)"2 when K = 0.2, E = 0.2,
fo=01,a=14n=05 N,=02 P. =16, B, =01 ....... 46

Results of Nu(Re,) 2 and Sh(Re,)"2 when K = 0.2, E = 0.2,
M=01f,=01,a=14,n=05 N,=02, L. =12, v =~ =

0.1 . o e 68
Results of Nu(Re,)"2 and Sh(Rey)™2 when K = 0.2, E = 0.2,
Fo=01,a=14n=05 Ny=02 P =16, E.=01....... 69

Xil



Abbreviations

IVP
BVP
MHD
ODEs
PDEs
RK

Initial value problem
Boundary value problem
Magnetohydrodynamics
Ordinary differential equations
Partial differential equations

Runge-Kutta

xiil



Symbols

Pnf
Hnf

Nu,

Density

Stress tensor

Thermal conductivity
Thermal diffisuitivity
Electrical conductivity
x-component of fluid velocity
y-component of fluid velocity
Magnetic field constant
Temperature of the wall
Ambient temperature of the nanofluid
Temperature

Density of the fluid

Viscosity of the fluid

Density of the nanofluid
Viscosity of the nanofluid
Radiative heat flux

Heat generation constant
Heat flux

Mass flux

Stefan Boltzmann constant
Absorption coefficient

Skin friction coefficient

Local Nusselt number

X1v



XV

Shy

©-

3

Local Sherwood number

Nanoparticle volume fraction

Thermal radiation parameter
Stretching parameter

Magnetic parameter

material parameter

Eckert number

Prandtl number

Relaxation time parameter

Brownain motion parameter
Thermophoresis parameter

Chemical reaction parameter

Lewis number

Viscosity of the base fluid

Heat capacitance of base fluid

Heat capacitance of nanoparticle
Electrical conductivity of the base fluid
Electrical conductivity of the nanoparticle
Thermal conductivity of the base fluid
Thermal conductivity of the nanoparticle
Dimensionless velocity

Dimensionless temperature
Dimensionless concentration

Ambient concentration

Concentration

Nanoparticles concentration at the stretching surface



Chapter 1

Introduction

Micropolar fluid is a viscous fluid that suspends stiff tiny particles that are ran-
domly oriented and rotate and spin slightly about their own axes. Examples
of micropolar fluids include animal blood, anisotropic fluids, lubricating fluids,
intricate biological structures, and specific polymer solutions. Magnetohydrody-
namics is the name of the science that examines how a magnetic field affects the

movement of a highly conducting fluid (MHD).

There are countless applications in engineering and business of Newtonian and non-
Newtonian flows in the presence of magnetic fields. The preparation of food prod-
ucts, oil industry, microelectronic devices, geothermal energy extraction of metals,
accelerators, atomic reactors, liquid beads and sprays, and MHD power generators
are a few of the noteworthy applications of MHD. The theory of the micropolar
fluid was first put forth by [1].

In Eringen’s theory, a new constitutive equation and a new micro-rotation material
independent vector field are added to the Navier Stokes equation. Eringen [2] ex-

panded his findings by developing a generalised theory of thermomicropolar fluids.

Shu and Lee [3] computed several fundamental solutions for unbounded steady
Oseen, Stokes, Stokeslet, Stokes couplet, Oseenlet, and Oseen couplet flow in
three and two dimensions. Rashad et al [4] investigated the boundary layer flow of

micropolar fluid for c oupled heat and m ass t ransfer across a s tratified medium
1
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and isothermal vertical surface, as well as chemical reaction and mixed convec-
tion. Mabood et al. [5] published an investigation of two-dimensional micropo-
lar fluid flow in a non Darcian with temperature dependent thermal conductiv-
ity and thermal radiation. They also studied viscous-Ohmic dissipation, Soret
effects, and non-uniform heat sources for flow, heat, and mass transport. To
solve the governing differential equation, the shooting technique is used with the

Runge-Kutta-Fhelberg method.

Mirzaaghaian and Ganji [6] investigate the flow of a micropolar fluid in a per-
meable tube for temperature and velocity distribution. The differential transfor-
mation method is used to address the problem. They concluded that decreasing
the Reynolds number increases the value of the stream function. Micropolar flu-
ids have micro-constituents that can rotate, the appearance of which can alter
the hydrodynamics of the stream, making it plainly non-Newtonian. In everyday
life, non-ideal fluids such as macromolecules, animal blood, and shampoo can be

found.

Turkyilmazoglu [7] investigated the MHD micropolar fluid over a deformable heat-
ed/cooled porous plate, including heat generation and absorption effects. The
flow, temperature, and concentration characteristics are precisely solved analyti-
cally. Bilal et al. [8] have attempted to investigate the Hall and ion-slip effects on
magneto-micropolar nanofluid flow via a porous medium. They employed vary-
ing thermal physical parameters to numerically study heat transmission over the
permeable sheet. More about the micropolar fluid with different aspects can be

found in [9]-[13].

Nanofluids are regular fluids with nanoscale metal or metallic oxide particles added
to improve the thermal conductivity of the working liquids. Researchers have gen-
erally acknowledged Choi’s contribution to the modelling and thorough investiga-

tion of nanofluids [14].

He conducted an experiment to demonstrate that adding nanofluids to base flu-
ids can improve their thermal properties. For the first time, Buongiorno estab-

lished two component slip mechanism models for the mass and energy transport
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in nanofluids, namely Brownian motion and thermophoresis of nanofluid.

Ramzan and Bilal [16] investigate the series solution of an un-steady second-
grade nanofluid caused by a porous perpendicular sheet in the presence
of mixed convection, heat radiation, and magnetohydrodynamics. Pal et al.
[17] developed numerical solutions for MHD Casson nanofluid boundary layer
flow across a vertical non-linear porous surface with Ohmic dissipation and heat

radiation.

Khan et al. [18] investigated the unsteady Flakner-Skan wedge flow of Car-
reau nanofluid across a stretched sheet using the zero mass flux and melting
heat condition at the boundary. They investigated the impact of nanofluids us-
ing Brownian motion and thermophoresis methods. Hayat et al. [19] adopted
an analytical approach lately focused on evenly applied magnetic field and heat
generation/absorption over three dimensional electrically conducting Oldroyd-B
nanofluid flow generated by stretching surface. They used the convective boundary
for temperature and the zero mass flux criterion for nanoparticle mass diffusion.
The numerical approach was utilised by Bilal et al. [20] to solve the problem of
three-dimensional upper convected Maxwell nanofluid with nonlinear thermal ra-
diation and magnetohydrodynamics over a bidirectional plate. Some other nom-

inated articles featuring the importance of nanofluid are highlighted as [21]-[23].

The use of nanofluid technology may also be seen in bubble electrospinning [24],
which used bubbles to create nanomaterials such as porous nanoscale materials,
nanoparticles, two-dimensional nanomaterials, and nanofibers. Bubbfil and blown

bubblespinning are the most often utilised industrial nanofiber production meth-

ods [25]-[26].

The concept of fractional calculus or fractal calculus is applied when working with
nanomaterials or nanofibers. Some information is lost when a higher-dimensional
(3D) problem is reduced to a lower-dimensional (2D or 1D)problem. The two
scale approach is typically used to reveal missing information. A two-scale transfor-
mation converts fractional calculus [27]-[29] into traditional partner to make two-

scale thermodynamics practical. Thermal radiation is the term describing the
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phenomenon of heat transmission by electromagnetic waves. It happens as a re-
sult of a significant temperature difference between the two media. The majority

of technical activities take place at respectable temperatures.

1.1 Thesis Contributions

In this thesis, we provide a review study of Hussain [30] and extend the flow
analysis by considering the additional effects of Cattaneo-Christov double diffu-
sion model with the assumptions of laminar, steady, incompressible, two dimen-
sional, porous stretching sheet, viscous dissipation, nonlinear thermal radiation,
Joule heating with convective boundary condition. The obtained system of PDEs
is transformed into a system of nonlinear and coupled ODEs by using a suit-
able similarity transformation. A numerical solution of the system of ODEs is
obtained by employing the shooting method. The mathematical inferences are
discussed for different physical parameters appearing in the solution influencing

the flow and heat transform.

1.2 Thesis outlines

Chapter 2 demonstrates some important definitions, | aws a nd ¢ oncepts which
are useful in understanding the upcoming work.

Chapter 3 contains a comprehensive numerical review of [30]. A numerical study
of micropolar nanofluid through a horizontal sheet with convective boundary con-
ditions is analyzed. The constitutive flow model e xpression are sorted o ut nu-
merically and the impact of physical parameters concerning the flow model on
dimensionless energy, velocity, and microrotation are presented through graphs
and tables.

Chapter 4 extends the flow model discussed in Chapter 3 by including t he im-
pacts of Cattaneo-Christov double diffusion. T he reduced system of O DEs after

applying a proper similarity transform is solved numerically. Graphs and tables
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describe the behavior of physical quantities such as, Pr, Nb, Nt, Ec, Le, M, and
R etc. Numerical values of skin friction coefficient, Nusselt number and Sher-
wood number have also been computed and discussed in this Chapter.

Chapter 5 summarizes overall analysis performed in this dissertation.



Chapter 2

Preliminaries

In this chapter, certain fundamental definitions, governing laws and dimensional

quantities are presented that will be useful in the subsequent chapters.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)
“A fluid is a substance that deforms continuously under the application of a shear

(Tangential) stress no matter how small the shear stress may be.” [31]

Definition 2.1.2 (Fluid Mechanics)
“Fluid mechanics is that branch of science which deals with the behavior of the

fluids (liquids or gases) at rest as well as in motion.” [32]

Definition 2.1.3 (Fluid Dynamics)
The study of fluid if the pressure forces are also considered for the fluids in motion,

that branch of science is called fluid dynamics. [32]

Definition 2.1.4 (Fluid Statics)
“The study of fluids at rest is called fluid statics.” [32]

Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the
6
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movement of one layer of fluid over another adjacent layer of the fluid. The
top layer causes a shear stress on the adjacent lower layer while the lower layer
causes a shear stress on the adjacent top layer. This shear stress is proportional
to the rate of change of velocity with respect to y. It is denoted by symbol 7.
Mathematically,

where u (called mu) is the constant of proportionality and is known as the coeffi-
cient of dynamic viscosity or only viscosity. ‘fl—z represents the rate of shear strain

or velocity gradient.” [32]

Definition 2.1.6 (Kinematic Viscosity)
“It is defined as the ratio between the dynamic viscosity and density of the fluid.

It is denoted by symbol v called nu. Mathematically,

7 [32]

UV =

SRS

Definition 2.1.7 (Thermal Conductivity)
“The Fourier heat conduction law states that the heat flow is proportional to
the Temperature gradient. The coefficient of proportionality is a material pa-

rameter known as the thermal conductivity, which may be a function of several

variables.” [33]

Definition 2.1.8 (Thermal Diffusivity)
“The rate at which heat diffuses by conducting through a material depends on the
Thermal diffusivity. It can be defined as

where « is the thermal diffusivity, k is the thermal conductivity, p is the density
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and C,, is the specifc heat at constant pressure.” [33]

2.2 Types of Flow

Definition 2.2.1 (Rotational Flow)
“Rotational flow is that type of flow in which the fluid particles, while flowing

along stream-lines, also rotate about their own axis.” [32]

Definition 2.2.2 (Irrotational Flow)
“Is the fluid particles while flowing along stream-lines, do not rotate about their

own axis then this type of flow is called Irrotational flow.” [32]

Definition 2.2.3 (Compressible Flow)
Compressible flow is that type of flow in which the density of the fluid changes
from point to point or in other words the density (p) is not constant for the fluid,
Mathematically,

p # Constant [32]

Definition 2.2.4 (Incompressible Flow)
Incompressible flow is that type of flow in which the density is constant for the
fluid. Liquids are generally incompressible while gases are compressible. Mathe-

matically,

p = Constant. [32]

Definition 2.2.5 (Internal Flow)

“Flows completely bounded by a solid surfaces are called internal or duct flows.” [31]

Definition 2.2.6 ( External Flow)
“Flows over bodies immersed in an unbounded fluid aresaid tob e an external

flow.” [31]
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2.3 Types of Fluid

Definition 2.3.1 (Ideal Fluid)
“A fluid, which is incompressible and has no viscosity, is an ideal fluid. Ideal fluid

is only an imaginary fluid as all the fluids, which exist, have some viscosity.” [32]

Definition 2.3.2 (Real Fluid)
“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [32]

Definition 2.3.3 (Newtonian Fluid)
“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.”

Definition 2.3.4 (Non-Newtonian Fluid)
“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.

Definition 2.3.5 (Ideal Plastic Fluid)
“A fluid, in which shear stress is more than the yield value and shear stress is
proportional to the rate of shear strain or (velocity gradient), is known as a ideal

plastic fluid.” [32]

Definition 2.3.6 (Magnetohydrodynamics)
“Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting
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and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [34]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)
“Heat transfer is a branch of engineering that deals with the transfer of thermal
energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [33]

Definition 2.4.2 (Conduction)
“The transfer of heat within a medium due to a diffusion process is called con-

duction.” [33]

Definition 2.4.3 (Convection)
“Convection heat transfer is usually defined as energy transport effected by the
motion of a fluid. Newtons law of cooling governs the convection heat transfer

between two different media.” [33]

Definition 2.4.4 ( Thermal Radiation)

“Thermal radiation is defined asradiant (electromagnetic) e nergy e mitted by a
medium and is sole to the temperature of the medium. Sometimes radiant energy
is taken to be transported by electromagnetic waves while at other times it is

supposed to be transported by particle like photons.” [33]

2.5 Dimensionless Number

Definition 2.5.1 (Eckert Number)

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and is used to
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characterized heat dissipation. Mathematically,

where C, denotes the specific heat.” [31]

Definition 2.5.2 (Prandtl Number)
“It is the ratio between the momentum diffusivity v and thermal diffusivity a.

Mathematically, it can be defined as

where p represents the dynamic viscosity, C'p denotes the specific heat and k stands
for thermal conductivity. The Prandtl number controls the relatives thickness of
thermal and momentum boundary layer. For small Pr; heat distributed rapidly

corresponds to the momentum.” [31]

Definition 2.5.3 (Skin Friction Coefficient)
“The steady flow of an incompressible gas or liquid in a long pipe of internal D.
The mean velocity is denoted by wu,. The skin friction coefficient can be defined
as

279

Cy =

2
P,

where 79 denotes the wall shear stress and p is the density.” [35]

Definition 2.5.4 (Nusselt Number)
“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,
which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

qL
Nu=2"
YT

where ¢ stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [36]
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Definition 2.5.5 (Sherwood Number)
“It is the non-dimensional quantity that shows the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

kL
h=—
S D

here L is characteristics length, D is the mass diffusivity and £ is the mass trans-

fer coefficient.” [37]

Definition 2.5.6 (Lewis Number)
“The Lewis number can be defined as the ratio of thermal diffusivity to molecular
diffusivity. I t ¢ haracterizes the m utual r elation o f h eat and m ass t ransfers in

various materials. Mathematically

where A is the thermal conductivity, Dm the molecular diffusivity, and C), the

specific heat capacity at constant pressure.” [31]

2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change of
mass in a fixed volume is equal to the net rate of flow of mass across the surface.
The mathematical statement of the principle results in the following equation,

known as the continuity (of mass) equation

9p
% + V.(pv) =0.

where p is the density (kg/m?) of the medium, v the velocity vector (m/s), and V

is the nabla or del operator. For steady-state conditions, the continuity equation
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(2.1) becomes
V.(pv) = 0. (2.1)

When the density changes following a fluid particle are negligible, the continuum

is termed incompressible. The continuity equation (2.2) becomes
V.v=0. (2.2)

which is often referred to as the incompressibility condition or incompressibility

constraint.” [33]

Definition 2.6.2 (Momentum Equation)

The principle of conservation of linear momentum (or Newton’s Second Law of
motion) states that the time rate of change of linear momentum of a given set
of particles is equal to the vector sum of all the external forces acting on the
particles of the set, provided Newton’s Third Law of action and reaction governs

the internal forces. Newton’s Second Law can be written as

%(pV) + V.[(pv)v] = V.o + pf. (2.3)

Where is the tensor (or dyadic) product of two vectors, o is the Cauchy stress ten-
sor (N/m?) and f is the body force vector, measured per unit mass and normally

taken to be the gravity vector.

Equation (2.1) describes the motion of a continuous medium, and in fluid me-
chanics they are also known as the Navier equations. The form of the momentum
equation shown in (2.4) is the conservation (divergence) form that is most of-
ten utilized for compressible flows. This equation may be simplified to a form
more commonly used with incompressible flows. Expanding the first two deriva-

tives and collecting terms

ov dp _
p(a + VV.V> + V(E + V-PV) = V.o +of. (2.4)

The second term in parentheses is the continuity equation (2.1 and neglecting this
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term allows (2.5) to reduce to the non-conservation (advective) form

p(% + VV.V) = V.o + pf. [33] (2.5)

Definition 2.6.3 (Energy Equation)
“The law of conservation of energy (or the First Law of Thermodynamics) states
that the time rate of change of the total energy is equal to the sum of the rate

of work done by applied forces and the change of heat content per unit time.

In the general case, the First Law of Thermodynamics can be expressed in con-

servation form as

dp €'
ot

+ V.pve! = =V.q+ V.(0.v) + Q + of.v (2.6)

where e’ = e+ 1/2v.v is the total energy (J/m?), e is the internal energy, ¢ is the
heat flux vector (IW/m?) and @ is the internal heat generation (W/m?).

The total energy equation (2.7) is useful for high speed compressible flows where

the kinetic energy is significant.

For incompressible flows, an internal energy equation is more appropriate and can

be derived from (2.7) with use of the momentum equation (2.4).

Taking the dot product of the velocity vector with the momentum equation pro-
duces an equation for the kinetic energy; this equation is subtracted from the total
energy equation (2.7) to produce the conservation (divergence) form of the internal

energy equation
dp e

ot

+V.opve=-Vq+Q+¢ (2.7)

where ¢ is the dissipation function that is defined by

¢p=0:V:Vv (2.8)

In Eq.(2.9) Vv is the velocity gradient tensor. [33]
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2.7 Shooting Method

To elaborate the shooting method, consider the following nonlinear BVP.

N"(z) = N(z)N'(x) + 2N?(z) (29)

To reduce the order of the above boundary value problem, introduce the following

notations.
N=X;, N=X/=X, N =X, (2.10)
As a result,
X = X, X1(0) =0, (2.11)
X, =X, X, +2X; X5(0) =k (2.12)

where k is the missing initial condition. The missing condition £ is to be chosen

such that

X1(H, k) =G, (2.13)

Now onward X (H, k) will be denoted by X; (k). Let us further denote X (k) — G
by M (k), so that

M(k) = 0. (2.14)

The above equation can be solved by using Newton’s method with the following

iterative formula

Mk,
kn+1 == kn - OMky,
ok
Xk, — G

ok
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To find E’)g—lkk”, introduce the following notations

00X, 0Xo

or =N g =N -

As a result of these new notations, the Newton’s iterative scheme, will then get

the form

X1k, — G

2.17
X3kn ( )

kn+1 = kn -

Now differentiating the system of two first order ODEs (2.11)-(2.12) with respect

to k, we get another system of ODEs, as follows

X} = Xy, X;5(0) =0, (2.18)

Writing all the four ODEs (2.11), (2.12), (2.18) and (2.19) together, we have the

following initial value problem

Xi = X, X1(0) =0,
X5 = X1 Xy +2X7, X5(0) =k,
Xé = Xy, X3(0) =0,
X = X3Xo + X1 Xy +4X, X5. X4(0) = 1.

The above system together will be numerically solved by Runge-Kutta technique

of order four. The stopping criteria for the Newton’s technique is set as,

| X1(k) — G |< e

Here € > 0 is small positive real number.



Chapter 3

Magneto-micropolar Nanofluid
Flow over a convectively heated
sheet with non-linear radiation

and viscous dissipation

3.1 Introduction

The review study of Hussain [30] is provided in this chapter. To convert the boundary
layer equations into nonlinear and coupled ordinary differential equations, an ap-

propriate similarity transformation is used.

The shooting method is used to sort out these ODEs numerically. Graphical
representations are also provided to explain the effect of evolving parameters.

Tables and graphs are used to investigate the numerical results produced.

3.2 Problem Formulation

Figure 3.1 depicts the shape of the flow model.
17
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Nanofluid "
L

Stretching sheet x
8C U = Uy(X)+Uslip

_k6_y=h!(cf_c) [

—kg—T =hy (Ty = T)
Bo 4

FIGURE 3.1: Geometry of the problem.

The set of equations describing the flow is as follows

ou Ov
ou L 9v 1
ou  Ou  (p+k\Pu kOG o )
u% + ’Ua—y = (T) 8Ty + ;a—y + ; (EOBO — BO’LL) s (32)
oG  0G y*0*°G  k < 8u>
U—Fv—="1— — — (2G+=— ), 3.3
dr ~ dy  pj %y pj dy 39
ar 9T  k [(d*T\  (uBy—Ey))’c 1 dq,
U + V7 = + — ==L
dr Oy pC, \ 0%y pCh pCp Oy
p+k\ [Ou\’ oT dC Dy [0T\"
i ( pCy ) (03/) o DBay oy T \3y) | (34)
2 2
o JC_p,0C Dt 55

Yor oy T TPy T T oy
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The aforementioned set of equations’ corresponding boundary conditions are:

u:aa:—i-a*[(u—i-k)g—Z—l—kG} V= Uy,
ou oT
G=-n—, —k|l—=—|=hpu(T;—-T),
dy (&y) o (Tr =) (3.6)
oC
- D _ _
B@y hfc(Cf C) at Yy 0,
u—0,G=0, T =Ty, C—Cxasy— o0

3.3 Conversion of the Model

In this section, we convert the system of equations (3.1)-(3.5) along with the
boundary conditions (3.6) into a unitless form. The following similarity transfor-

mation is employed

<\fy, G = ar[*h(Q), u=ar Q) v=—Vaf(Q), -

o) = £~ G

<<)TT C Coo

In the above discussions K, M, f.,, P, a, E, R, E., Ny, Ny and L, are the material
parameter, Hartman number, suction/injection parameter, Prandtl number, slip
parameter, electric parameter, radiation parameter, Eckert number, thermophore-
sis parameter, Brownian motion parameter and Lewis number respectively. These

quantities are written as follows:

k B2 1 C )

K:_7 MQ_ua fw:—(CL'U)QUw, P’r:ua
p pa k
S Ey 40*T3 u?

a =« - = = c = ’
Al 1By’ Kk C, (T — Toe)
7Dt T «

N, = Ty —Ty), Ny=-Dp(Cy—Csx), Le=—,

: vToo( 1 ), No= D (C; ) D

hfc v hft v 2 a Tf

2 DB\[’ M=% Ve ’ T )



Micropolar Flow of EMHD 20

The entire procedure for converting (3.1)-(3.5) into the dimensionless form is dis-

cussed below:

u=azf'()
o= 2 (@ f(0)
=af'(C). (3.8)
v=—Vavf(().
o =~ (Vauf(©)
v () (1)
= —af'(¢). (3.9)

Using (3.8) and (3.9) in (3.1)

8u (%

e =af() — af'(O) =

Procedure for the conversion of (3.2) into the dimensionless form is as follow

ou g a \ " a \ 0 a _a%xf”(C)
=gt (Vo) =oo (i) (Vo) = =0

WP = (ar () (a7 (Q)) = a2 (F/(Q)) (3.10)
8u _ agxf"(C) e "
Vg, = Va0 — 5 FOS(©): (3.11)

Using (3.10) and (3.11), the left side of (3.2) becomes:
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The following approach has been used to transform the right side of (3.2) into a

dimensionless form

ou 0, [a\ ., \/E o)
St () (B2
Pu aiz ,, [ [a \ O a \ a’zf"(C)
S ()32
oG a 0 a , .0 a\ dz,
i =ax ;a—yh(g) :ax\/;h (¢ 3_y< ;y) = Th Q). (3.13)
p+k\ Pu  (p+k\ dPz,
(p>82y (p>7f(o
2 /L—i_k "

=a’*z (1+ K) f"(Q). (3.14)

kOG  ka*w,, . o, [k, 5 [k,
Sy g o MQ=aw {p o @] - Lﬂh (01
=a® Kzh/'(¢). (3.15)

% (EoBo — Bju) = % (EoBo — Byaz['(())

EyB B?
= d’ {“ - Z °f’(<)]
pa*x pa

-] (8) () ()]

=a’z [M*E — M*f'(¢)] . (3.16)
oz @ By _ Ly
(' M= pa’E_aa:Bo)

Using (3.12)-(3.16) in the right side of (3.2), we get

p+k\o%u koG o ,
HTRNCY B9 % (BB, — B
( p )82y+p@y+p(00 o)

= a’z [(1+ K) f"(Q)] + a*x [KN(Q)] + a*x [M*E — M f'(()] -
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Hence the dimensionless form of (3.2) becomes:
@’z [(£(0) = QL Q)] = a[(1+ K) £(Q)] + @ [KR (Q)] + o’ [ME
- M2 f'(Q).
= [(F(Q) = FOF(Q] = [+ K) () + [KI(Q] + [M2E - M2F(Q)].
= (1+K)f"+ ff"—f*=Mf' + KW+ M*E = 0. (3.17)
Procedure for the conversion of (3.3) into the dimensionless form is as follows:
oG a0 a\ azh(C)
a0 x P _ atnfh(Q)
ugo = axf'(¢) x N R (3.18)
oG a , la
oy xr ;h (\/;y)\/;.
oG 2
vy = (Vanf(Q) = Fr(Q)
=~ RN (3.19)
Using (3.18) and (3.19), the left side of (3.3) gets the following form:
LG 0G _atxf(Qh(Q)  azzf(QN(Q)
or oy VU
agx !/ /
=/ [F(QR(E) = FON()]- (3.20)

The following approach has been used to transform the right side of (3.3) into the

dimensionless form

’G 0 a%h, a
7o ()
a’r a
=" (C)<\/;y)

= . (3.21)
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) kY EO\ K\ .
V= (u+§)1=u(1+@J>J=u(l+5)J- (3.22)
1+ 515
7_*82(} _ N( + 2)J agxh”(c)
pj 0%y pJ v3
5l 1+5) ]
— agx ( g h//(()
Vol pu ]
5 M<1+§>
_ et R€)
Vol w |
5 -
3 K
- aﬁc (1 + 5) h”“)} (3.23)

et f"<<>>]

_ a\if p’; (2h(C) +f”(77))} (J = S)

;;@Mo+f<oﬂ

<
s

J-K@M0+f%04- (3.24)

Using (3.21)-(3.24), the dimensionless form of right side (3.3) is as follows:

*x 92
i 6_G_i(2G+@>

pJ Py pi dy
-2 Kl + g) h”} ~al [K (2h<<> + f”(C))]

Hence the dimensionless form of (3.3) becomes:

(%

F(ORC) = FION(Q)] = a3 = (1 + 5) 1) — af —=[K2h(C)

QI

+17(Q)].

K

¢U«mm—ﬂowm=(H~)M«%Jﬂ%@+f«»
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= (1 + %) " + fh' — f'h — K (2h + f"). (3.25)

Now we include below the procedure for the conversion of (3.4) into the dimen-

sionless form

00 = =1
= T = (T — Too) 0(C) + T (3.26)
‘;_Z _0 (3.27)
ug—z ~ 0. (3.28)
5=\ T - T, (3.29)
v = =a Ty = T (OF©) (3.30)
Using (3.26)-(3.30), the left side of (3.4) gets the following form:
e g_z —0—a(Ty - T) 0O F(C)
— —a Ty~ T)H(QFC) (3.31)

To convert the right side of (3.4) into the dimensionless form, we proceed as follows

PT  a "
Py v (Ty — To) 0"(C).
]{71 (92T 1{31 a 1
(1t By — Ep)’o _ (WPB§ + E§ —2Eou By) o
p Cp a p Cp
(B G0) B B 2B OB (o
P “p
/ 2, E§ T o

— (&x)2 Bg ((f (77)) (al‘)pBon (‘”U)Bof (O) (u = al’)
2 12 ((f,(C))Q + E2 - 2Ef/(77)) o EO
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(Tf - TOO)
- [0+ 002 (07] (2 ) T - ). (3.34)
(C-0Cy)
= €= 6(0) (Cy - Cu) + O (3.35)
oC ,
=\ - C0#© (3.36)

— (T - T (¢(0) a Ty - L)
— N, (0(0))? a(Ty—To). (Nt _ % (T Too)) (3.38)
0O = 71
T = (T) = Too) 8(C) + T — Tw(% - 1)9(@ T
T =T (B = 1)6(O) + 1) (3.39)
-t -n0y?)
=22
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.l ng_z
_ _16;’]:?3 [(9 —1)0(C) + 1}3‘2—5
e s IR
;Zf;TC?’p B—ys (B — 1) 0(C) +1)* (B — 1) g—z]
_ _;ZU/)T(%, [(ww = 1D0(Q) +1)° % (Ty — Too) 9”(()}
- e [ (0~ 1)0(0) + 17 0 1)

rionfs -1 gty e -r)

_ _%p"gﬁv [((ew —1)6(¢) + 1)39”(0]
— a1y~ T [ (0= 1000 + 100
_ %a@ T [ (0 — 1) O(C) + 1) (0, — 1)9’2(6)}
S - -omates
_ _% prwkgp 1) {«ew S 1)) + 1>30"<<>}
_ %prw’ﬁcpa (T — Twe) {3 (6 — 1) 0(¢) +1)* (B — 1) 9’2(4)}
_ 4331]/)’%]3 (Ty — Tso) {((ew —1)6(¢) + 1)36”(0}
-ty - ) [3 00— )0 + 17 0 - 1070

(3.40)

Using (3.32) to (3.40), the dimensionless form of right side (3.4) is as follows

2 N 2 * 2
k1 (8 7;) . (w By — Ep)" o n 1 16‘7* T:Oa_T + (u—i— k) (%)
G, \y p G, pCyp 3k =0y \pC ) \y
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oT oC Dr oT
o [DB dy oy (ay)
kl a " 2 ((f/(C))2+E2 —2Ef/(<>)
= —(Ty—Tx)0 +u? B o
D va ( f ) (C) 0 P Cp

CLkl

was w0 En o] (S ) @ -1
+ [N (S () (Ty = Toe) a+ [N (0(0)° | @ (Ty — To)
P (1 1) (00— D00 + 1))

3 vp Cp
+ ?Upklcpa (Ty — Two) [3((60 — 1) 0(C) + 1)* (6, — 1) 0”%()] -
— oty =T [ L0 + B (10 + 82 - 2670))]

akl

w[asm En o] (S ) @ - 1)
+ [ N9 () + [N (0(0))°] a(Ty = 7o) | (Ty — Tic)

iR_t
3 vp Cp

a(Ty = Tee) [((6 — 1) 0(0) +1)76"(C)]

+ ?Upklcpa(Tf — 7o) [3((0, — 1) 0(C) +1)% (0., — 1) 0*(C)] .

ak1

rCp

+[(
|

(17 = ) |00+ 22 B (1) + B2 = 270))|

1+ B (@] (45 ) @ - T

p

+ [N Q) + M@ O]ty - 7o) (B2 ) () 1y - T

%Rvpkgp (T — Tse) [((60 — 1) 0(C) + 1)° 0" ()]
T %fgpa (Ty = Too) [3((0 — 1) 0(C) + 1)* (6 — 1) %(C)] -
(Ik’l

e Cp

+|
|

(Ty = ) [0(Q) + PEM? ((F(0)) + E* = 2Bf/(Q) )|

0+ 8) B 0] () (1= T

ki

+ [N + M@0 (17 - T 2 () (17 - T

LA R 1) (0 - 1) 6(0) + 12 0(C)]

3 vp Cp

F (1 1) [3((0 - D00 + 17 (8~ 1) O2(O)].

3 vp Cp
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= (1 - 1) [9’%6) hep, (v (O)2+E2_2Ef/<o>]

i Cp ki
+ L8 (1= ) [N (0810 + M0 O] 7
+ (ukép) a(Ty — T [(1 + K) E.P, (f”(())Q]
+§§Wﬁb (Ty = Too) [((0w — 1) 0(Q) + 1)° 0"(Q)]
?w’fa’@ (T = Too) [3((0 — 1) 0(C) + 1) (0, — 1)02(Q)] . (3.41)

Hence the dimensionless form of (3.4) becomes:

2 By — Ey)? 1 160* _, 0T
u@_T T 6T k’l 0T X (,u 0 0) o + 60 T;o@_
ox oy p C, \ 0y? p C, p C, 3k* dy

(Ge) ) s 2 ()]
= —a(T; — To) () f(C)
::%wg_nghm+“@aM%u«ﬁ+ﬁ—%W@ﬂ

0 k1
+ 8 (1= 1) [N Q) + N0 ()] P
+ () alty = o [0+ K) ER (O]
o (T = 1) (6 = D8O + )]
e (T = L) [3(8 — D O(C) + 1P (0~ D 8(0)].
> — L2050

[<>+PEM%<<»+E%JENQH

+ VO (O (C) + N, (0(0)) } P,

[ (14 K)E.P, ( } + % (6 — 1) 6(n) + 1)°0"(¢)]

4

— [B((0w =10 +1)° (0 - 1) ()]

=~ — RO
= [0Q) + PEM (71O + B2 —287/(0))]

+ [N (Q)9(O) + N (0(Q))’] P,
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[t B BR (0] + 5 (00— 1)0(0) +1°0'(0)]

3
+ % [3((0 —1)0(C) +1)* (6, — 1) 0%(Q)] -
= POQOSQ + [0(0) + PEM ((f1(Q) + B = 2E£(Q))

+ [N (Q9(Q) + N (0] Py

[0+ K B ()] + 5 (0 - 100 + 1) ()]
+ 230w~ 160 + 17 (0~ 1)67()] =0

= Q) [+ 5 (00 = D00) + 1]

+ RS () + PEM? ((£(Q) + B —2Ef(C))
AR (0 = 1) 0(0) +1) (0 — D O*(Q) + (1 + K) EP, (f'(Q))°
+ P [N (OF(Q) + NO(Q)] = 0. (3.42)

Now we conclude the procedure for conversion of (4.5) into the dimensionless form

L (3.43)
uaa—i =axf'(¢)(0) = 0. (3.44)
o2 (o (\ﬁ) (Cr - C) H(0)

= —a(Cy — Cx) [F (O ()] (3.45)

Using (3.44) and (3.45), the left side of ((3.5)) gets the following form:

oC  aC ,
U +v@ =0—a(Cy - Cx) [f(C)#'(C)]

= —a(Cr = Co) [F(OF ()] (3.46)

To convert the right side of (3.5) into dimensionless form we proceed as follows

0*C
57 = 5 (€= Cx) 80 (3.47)
0T
7 =3 T = 1) 0'(Q). (3.48)
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9*C a

Da'y s = Da's (€5 = o) (). (3.49)
DT%EQ::DT%(Tf—Ig)HXQ. (3.50)
M:%%%%jn—uy (3.51)
bzz(ifgfef(cy——Cm). (3.52)

Using (3.47)-(3.52), the dimensionless form of right side of (3.5) is as follows:

2 2
DB§§+DT2y
D
= Dy (Cy = Co) 9/(0) + 7+ (Ty = Toe) 6(C)
a Dy (Ty —Tx)

= Dp—(Cy - Cx) 10+ - T Dy (Cr = C )9,,@}

Dy (T -To) (0,00, .,
T D5 (€0 (0 0, (0 ) “)]

= DB% (Cy = Cx) [9"(C) +

D 1
= DB% (Cf - Coo) ¢”(C) + % (Tf - Too) o, DB(Cf_Coo) gll(C)]
i (0 o)y v
[ Ny "
= Do (O = Cao) |4(0) + 0"(0)] (3.53)

Therefore the dimensionless form of (3.5) becomes:

@_}_060 D 82_04_&62_7—‘
ox dy B@yQ T, 0y?

= —a(Cy - Cu) [FQF (O] = Do (€ - Cu) [d'(o n

= 1000 = Day |410) + 316)
= - 5 OS] = (070 + 310)



Micropolar Flow of EMHD 31

= - RLUQIOI= [+ 3@ (R=1)

Nt "
= ¢" + P L f(Q)#'(C) + EQ = 0. (3.54)

Rewriting the converted ODEs together

L+ E)f"+ [ = [P+ KN() — M*['+ M*E =0, (3.55)
(1 + %) W'+ I — R — K (2h+ ") =0, (3.56)
0" {1 + %R (0w —1)0+1)°| + P.f0' + M’E.P, [ + E* — 2Ef']

FAR (0 — 1)0+ 1) (60 — 1)) + (1 + K) E.P, f"

+ P, (No0'¢' + N,6%) =0, (3.57)

¢"(C) + P Lofd + %9’/ = 0. (3.58)
b

Conversion of the boundary conditions:

UV = Uy, at y:()
= —\/@f(é)sz at ¢ =0.
UV
= f(¢) =—(av)? v, at ¢ =0,
= f(C) :fw' <fw:_(av>_7vw> at CZO
0
G= —na—Z at y = 0.
= ax\/gh(g) = —na—\/%xf"(o at ¢ =0.
= h(¢) = —nf"((). at ¢ =0.
U=a$+a*{(u+1€)g—z+kG} at y=0.

3

(u+k) a—\/%:vf”(C) + kax

= 710 =10 (a0 270+ 1y 2000

= axf'(¢) = ar + o*

B

h(C)] at ¢ =0.

| IS

at ¢ =0.



Micropolar Flow of EMHD

S PO =14+a' \/gf"@+a*k\/%f"<o+a*k\/%h<o at C—0.

a

S PO =1+a f(O)+aKP(Q)+a Kh(Q) (K _ S o am\ﬁ)

()

= [(Q)=1+a(l+K) () —a Knf'(() (h(¢) = —nf"(¢))

= f()=1+a(l+ K- Kn) f"({) at (=0.
= f(()=1+a(l+K((1-n)) ). at ¢ =0.
9,
hft [Tf_T]:_ka_Z; at y:O
= a1y =) = =k [0 2 1 - ) at (=0,
i e (T =T) _
:>9(<)_ k\/g(Tf—Too> atC—O
/ _ hft v [Tf — 6<C) (Tf - Too) - Too] _
:>9(C)——7\/£ T, — T at (=0.
, __@ z Tf—Too_ Tf_Too _
= 00 =" L [ 007 = at (=0,
= 00 =2 " (- 0) at =0
= 00 =-n0-0@).  (n="/7) at ¢ 0.
= u—0, as y = oo.
= axf'(c0) =0 at ¢ = oo.
= f'(0c0) = 0. at ¢ = oo.
= N — 0, as 1y — 00.
= ax\/gh(g):o at ¢ = 0.
= h(c0) =0. at ¢ = 0.
= 1T — Ty as y — 0o
:>9(OO):O at CZOO.
oC
_DBa_y:hfc(Cf_C) at y=0.
= helCy =) = =D [0 /2 (04 - €] ot ¢=0.
iy Ny (Cp = C)
= ¢<<)_ DB\/%(Cf_Coo) at C:O
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/ _ _% 4 (Cf — C) _
= ¢'(() = DB\/;—<Cf_Too) at ¢ =0.
/ _ hfc z [Cf - ¢(C) (Cf - C’oo) - C100] _
R ot (=0
ey = e V1 =C 4 nCr = Coo _
= 010 =~ L[S a0 ] at ¢=0.
’ _ th K N _
= Q=12 (1= 60) ot =0
> 60 =—n0-00). (=) i (=0
Boundary conditions are as follows:
[O) = fur JO)=14a(+K1=n)/©), |
h(0) = —nf"(0), 6(0) = —y (1 —6(0)),
(0) = —nf"(0) (0) = = (1 - 6(0)) (3.50)
¢'(0) = - (1-¢(0), at y=0,
f'(y) =0, h(y) =0, 6(y) =0, ¢(y) =0, as y — oo.]
The local skin friction is given as
cf, = 2w (3.60)
p(azx)
Shear stress at the surface is defined as
T, —{( +k)@—|—kN} (3.61)
w= (k) 5 ;. :
Converting 7,, into dimensionless form as follows:
Tw = a:c\/gu f"0)[1+(1—-n)K]. (3.62)

To get the dimensionless form of C'f,., the following procedure is worked out.
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2T,
Cf, = s
e
2a:rj\/—,u f"0) 1+ (1—-n)K]
p(aaf)
2\/_pf” )[1+ (1 —n)K]
p (az) ‘

v 1l

Multiplying both sides by 1p (az) 2

%Cfx(ax) \/g§=fﬂ(0) [1+(1—n)K]
= %Cfx(al‘)\/g%:fﬂ(o)[l"‘(l_”)[(] (U:%’ %:g)

N %Cfx\fx = ["(0)[1 + (1 = n) K]

= %Ofoeg% = f"(0)[1+ (1 —n) K]

Hence, the dimensionless form of the coefficient of skin friction is

SCfRed = f'(0)[14+ (1 —n) K], (3.63)

where Re represent the Reynolds number defined as Re = \/gx The Nusselt

number is given as
(3.64)
where g, are given by
aT
G = { ky—— + qr} : (3.65)
dy y=0
Converting ¢, into dimensionless form, it gets the form:

o = —kf\/g(Tf ~T.)8(0) [1 + %R (6 — 1) 6(0) + 1)3} (3.66)
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To get the dimensionless form of Nu,, the following procedure is worked out

. Tqw
Kf (Tf - TOO)

—aky/Z (Ty — Tio) 0'(0) [1 + 53R (0, — 1) 0(0) + 1)3]

Kf (Tf - TOO)

_ _g;\/g{l + %R((Qw —1)0(0) + 1)3}9'«)).

Nu,

Multiplying both sides by %\/g ,

Nux—\/g =— {1 + %R((@w —1)60(0) + 1)3} 0'(0).

— NuRe? = — {1 + %R((Gw —1)6(0) + 1)3}9'(0).

Hence, the dimensionless form of the Nusselt number is

=1
2

NuyReZ — —|1+ %R((Gw —1)6(0) + 1)* | 8(0),

where Re represent the Reynolds number defined as Re = \/%:c

The Sherwood number is given as

Lquw

Sh, = )
Dp (Cf - COO)

where ¢, are given by

oC
dm = |:_DB8_:| .
Y1ly=0o

Converting ¢, into dimensionless form, it gets the form:

in = ~Da [(€; — ) [ 260)]

(3.67)

(3.68)

(3.69)

(3.70)



Micropolar Flow of EMHD 36

To get the dimensionless form of Sh,, the following procedure is worked out.

Ty
e = D0 — O
2Dy [(Cr - C) 29(0)]
- Dgp (Cr — Cx)
= —(/=4/(0)

Multiplying both sides by %\/g ,

1 Ju ,

— ShyReZ — —¢'(0).

Q

Hence, the dimensionless form of Sherwood number is

Sh.ReZ = —¢(0), (3.71)

where Re represent the Reynolds number defined as Re = \/ga:

3.4 Solution Methodology

For solving (3.55) and (3.56) with the associated boundary conditions (3.59), we
use the shooting method. First of all, we need to convert these equations into a

system of first order differential equations. Let us use the following notations.

f:Sh f/:Si:S% //:S§:S37 (372)
h = Sy, h' =8} =Ss.
The resulting IVP takes the form:
S] = S, S1(0) = fu,
b ' (3.73)

55253, SQ(O):1+CE(1+K(1—TL))]),
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. S2- 5,83 — KSs+ M2S, — M?E )
53: : =3 1jK 2 ) 53(0):10,
8= s, Si(0) = —np, ¢ (3.74)
2 K (2 —
5y — 25t (Qf“; %) = 515%) S5(0) = q. |

In the above system of equations (3.74), the missing initial conditions p and ¢ are

to be chosen such that

(S2(p, 4))¢=¢.. =0, (Sa(p,4))¢=c.. = 0. (3.75)

As the numerical computation can not be performed on an unbounded domain,
therefore the domain of the above problem has been taken as [0, (] instead of
[0,00), where (, is an appropriate initial positive real number. We use Newton’s

method to solve (3.75), through the following formula

9S2(p,q)  9S2(p,q9) ! S,

p _ p B op g
984(p,q)  9Sa(p,q) ) g
4 n+1 4 n 9p 9 n 4 n

Furthermore, the following notations will be useful for computing the entries of

the Jacobian matrix

aSl 852 @Sg 854 (955

ap 6 ap 7 ap 89 ap 9 ap 10,
08 a5 a5, aS. a5,

a_ql = S, 8_; = 512, 8_; = 513, 8_q4 = Su, 8_q5 = 515.

Newton’s iterative scheme will change the form after utilizing the above-mentioned

notations as follows

-1

p P Sz Sio Sy
q q Sy Sua Sa

n+1 n n n

Now differentiating the system of five first order ODEs with respect to p and gq,

we get another system of ODEs, as follows:

Si _ 527 Sl(o) = fw’
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Sy = Ss, 52(0) =1+a(l+ K (1-n))p,
, 82— 8185 — KSs+ M2Sy — ME -

53 - 1 + K ) 53(0) =D,
Sh = Ss, S4(0) = —np,
, 2(SySs+ K (25 + S5) — $1.55) B
515 - 2+ K ’ S5<0) =q,
S(IS = S77 86(0) - O’
Sy = Sg, S7(0)=14+a(l+K(1-n)),

;25557 — 5158 — 5356 — KS19 + M?2S; B
58 - 1 + K ) SS(O) - n,
% = S, $5(0) =0,
 2(82S9 — SuSy — 1810 — S5S6 + 2K Sy + K Sy)
510 _ 29 47 1 21:_ - 56 9 8 7 510(0) _ 07
Sil = 5127 SH(O> = O,
Sia = Si3, S15(0) =0,
, 255519 — 81513 — 85511 — KSi5 + M?S
513 _ 212 1~13 - j_ }(1— 15 127 83(0) _ 0’
Si4 = 5157 S14(0) = 0,
 2(S2Sus — SuSia — S1S15 — S5S11 + K (2514 + Si3)
515 _ 214 412 1 215_|— K 511 14 ) 515(0) -1
(3.76)

The following criteria is the stopping condition for the shooting method:

maz | {]5(Coo)l, [S4(Co0) [} < €

where € is a small positive real number. Throughout this work, ¢ has been taken

as 1071 unless otherwise mentioned. Also, for equations (3.57) and (3.58), the

following notations have been used

#(¢) = Vs,
By =6,—1,

0'(¢) = Vi =V,
¢/<C) = ‘/3/ = ‘/217

By =1+ By,

9//<C) — ‘/1// — ‘/2/’

¢II(C) — ‘/3// — ‘/4/.
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1

B=——
{1 + §RB§}

By = M?E.P, (f? + E* = 2Ef) + (1 + K) (f"*) + 4RB, B}V?

+ PrVo (f + NoVi + N Va)

o 4RBlB§V5
3 — (E1)2 )

E; = 8RB B3VyV + 8RB2ByVEVs + PV (f + NyVy + Ny Va)

+ PrVy (Ny Vs + N V)

o ARBiB3V,
5 — (E1)2 )

E¢ = 8RBy B2VyVig + 8RB2ByV2Vy + PVio (f + NyVi + NyVa)
+ PrVh (NyVis + NiVag)

As a result, the coupled ODEs are converted into the following system of first

order ODEs

V] =Vh, Vi(0) =1, ]
Vy = By x By, Va(0) == (1-1),
V)=V, V3(0) =m,
Vi = —LeP.fVi— (Nt/Nb)  (E1 % E2), Va(0) = =7 (1 —m). |
(3.77)

The above initial value problem has been solved by using the RK-4 method. The
missing conditions [ and m are choosen very carefully, so that the following con-

ditions must hold

Vil m)]¢e=c.. =0, [Va(l, m)]e—¢.. = 0. (3.78)

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme
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-1

oVi(l,m)
z | B
l
m m 8V3£()l,m)
n+1 n+1

Now, introduce the following notations

vy vy Vs
T ]
o Vy Vs
am = G Ve G

_:‘/77

-— = Vi,

(9V3é(rl);m) ) v,
oV,
W - ‘/87
oV
AL v
am 12

n

As a result of these new notations, the Newton’s iterative scheme gets the form

[ [ Vs

m m Va
n+1 n

-1

Vo Vi
Via Vs

n n

Now, we will get another system of eight 1st order ODEs after differentiating the

above system of four ODEs of 1st order w.r.t to [ and m

Vi = Vs,
‘/g:El*E4+E3*E2,

Vi =i,

Vi = —L.P,fVs — (Nt/Nb)  (E1 % B4 + E3 % E2),

‘/9/:‘/107
WIOZEl*E6+E5*E2,

/
‘/11 — ‘/127

Viy = —L.P, fVis — (Nt) x (E1 % E6 + E5 x E2).

The stopping criteria for the Newton’s method is set as:

maz | {|Vi(Co)l; [Va(Coo)l} [< €,

where € is a small positive real number.

V5(0) =1,
V6(0) =,
Vz(0) =0,
V5(0) =0,
Vo(0) =0,
Vio(0) =0,
Vi (0) = 1,
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3.5 Results and Discussion

The numerical results of the equations in the preceding sections will be discussed
through the graphs and tables in this section. Various important parameters, such
as the material parameter K, suction/injection parameter f,,, magnetic parame-
ter M, Prandtl number Pr, radiation parameter R, Lewis number Le, Brownian
motion parameter Nb, thermophoresis parameter Nt, thermal Biot number v,
and solutal Biot number 75, are taken into account when performing numerical
calculations. These parameters have a direct influence on the distribution of ve-

locity, temperature and concentration.

Table 3.1 describes the computed numerical results of Cy using different values of
physical parameters given in the table. Skin friction C is decreased by raising
the values of the material parameter K and suction parameter f,,. It is observed,
the increase in Hartman number M and suction/injection parameter f,, enhance
the local skin-friction coefficient, whereas the local skin friction coefficient shows
a decreasing behavior for buoyancy ratio parameter n and the slip parameter o.
In this table, Iy and I are the intervals from which the missing conditions f and

h can be chosen.

Tables 3.2 and 3.3 discuss the effect of significant characteristics of the local Nus-
selt number Nu(Re,)"2 and Sherwood number Sh(Re,)~2. The local Nusselt
number and Sherwood number fall by enlarging the Eckert number Ee¢, and the
thermophoresis parameter Nt. The local Nusselt number and Sherwood number
mount while enlarging the radiation parameter R, temperature ratio parameter

6., Prandtl number Pr and Lewis number Le. The effect of slip parameter o on

the velocity profile f/(¢) is presented in Figure 3.2.

Increasing the values of the slip parameter « reduces the velocity field and the
boundary thickness as depicted in Figure 3.2. In this table, I, and I, are the

intervals from which the missing conditions # and ¢ can be chosen.

The impact of the suction parameter f,, on the velocity profile f(() is presented

in Figure 3.3. For gradually increasing suction parameter f,,, the velocity profile
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decreases and the boundary layer width grows. The impact of the material param-
eter K on the velocity profile f/({) is presented in Figure 3.4. By increasing K, the
velocity field reduces in the lower half of the surface whereas it enhances in the
upper half. The impact of the material parameter K on the microrotation pro-
file A(C) is displayed in Figure 3.5 whereas diminishing trend is noticed near the
surface, where a declining trend is visible towards the surface and escalates away
from the stretching sheet. As the material parameter is increased, the viscosity

of the fluid falls.

Figure 3.6 and 3.7 depict the impact of Hartman number M on the velocity profile
f'(¢) and the temperature profile 6'(¢). It shows that the huge values of the
magnetic parameter M cause an increase in both the velocity profile f/({) and the

temperature profile 6'(().

Figure 3.8 demonstrates the impact of the thermal Biot number v, on the temperature
profile 6'(). We notice that the enhanced values of the thermal Biot number ~;
cause a higher energy. Figure 3.9 displays the influence of Eckert number Ec
on the temperature profile #'(¢). Temperature profile increases when the Eckert

number is increased.

Figure 3.10 represents the impact of the temperature ratio parameter 6, on the
temperature profile. Temperature rises when the temperature ratio parameter 6,

is increased, as shown in Figure.

Figure 3.11 depicts the effect of the Prandtl number Pr on the temperature profile
0'(¢). The temperature of the fluid decreases as the Prandtl number increases due

to a thinner boundary layer thickness and reduced thermal diffusivity.

Figure 3.12 depicts the effect of the thermophoresis parameter Nt on the temper-
ature profile @ '({). For t he i ncreasing values o f the thermophoresis parameter,
it is obvious that the thermal boundary layer thickness and temperature are in-
creased. Figure 3.13 shows that as the thermal radiation parameter R is increased,
the boundary layer thickness and temperature increase. In the presence of radia-

tion, the working fluid absorbs more heat, which improves the temperature profile.
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Figure 3.14 depicts the effect of increasing Lewis number Le values on the concen-
tration profile ¢((). Because the Lewis number is the ratio of the kinematic vis-
cosity of the nanofluid to the Brownian diffusion coefficient, increasing the Lewis
number leads to an increase in the viscosity of the fluid, which resists fluid motion

and hence reduces the concentration of nanoparticles.

In Figure 3.15, we see that the thermophoresis parameter Nt has an increasing
impact on the concentration profile ¢(¢) and solutal boundary layer thickness.
The thermophoresis parameter and the thermal diffusion coefficient are directly
related. For bigger values of the thermophoresis parameter Nt, more nanoparticle

diffusion occurs, and thus the concentration of the nanofluid is increased.

Figure 3.16 depicts how an increase in the Prandtl number Pr causes a reduction
in the concentration profile ¢(¢). As the Prandtl number increases, the thermal

diusivity decreases, resulting in the low range temperature seen in Figure 3.16.

The effect of Brownian motion parameter Nb on the concentration profile ¢(() is
presented in Figure 3.17. Increasing the values of the Brownian motion parameter

reduces the concentration profile.

Figure 3.18 shows the effect of solutal Biot number 7, on the concentration pro-
file ¢(¢). The concentration profiles are greatly improved for higher solutal Biot

number values.

Rising values of both Nb and Nt, as seen in Figure 3.19, reduce the rate of heat
transmission on the surface. Figure 3.19 depicts the relationship between the
thermophoresis parameter and Brownian motion parameter on Sherwood num-

ber, indicating that mass transfer rate increases for Nb and reduces for Nt.
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TABLE 3.1: Results of (Rew)%%C ¢ for various parameters

K M n fo «a (Re,)21C; I Iy
0.2 -0.37183  [-0.3-0.1]  [0,5]
0.3 -0.37483  [-0.3-0.1]  [0,5]
0.4 0.37769  [-0.3-0.1]  [0,5]
0.2 -0.37093  [-0.3-0.1]  [0,5]
0.3 -0.37052  [-0.3-0.1]  [0,5]
0.4 037112 [0.3-0.1]  [0,5]
0.1 0.6 -0.37073  [-0.3-0.1]  [0,5]
0.7 -0.36959  [-0.3-0.1]  [0,5]
0.8 -0.36842  [-0.3-0.1]  [0,5]
0.2 -0.38154  [-0.3-0.1]  [0,5]
0.3 -0.39134  [-0.3-01]  [0,5]
0.4 040120  [-0.3-0.1]  [0,5]
01 1.5 -0.35621  [-0.3-0.1]  [0,5]
1.6 -0.34191  [-0.3-0.1]  [0,5]
1.7 -0.33785  [-0.3-0.1]  [0,5]
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TABLE 3.2: Results of Nu(Rem)f% and Sh(ReI)fé
when K = 0.2, E =02, fo =01, a = 1.4, n = 0.5, N; = 0.2, L, = 1.2,

=7 =0.1

R 6, P E. N, Nu(Re;) 2 Sh(Re,) % I Iy
0.3 0.11587  0.08736  [-0.3,0.2] [-0.3, 0.3]
0.4 0.12622  0.08739  [-0.2,0.3] [-0.4, 0.3]
0.5 0.13633  0.08741 [-0.2,0.2] [-0.4, 0.2]
02 1.4 0.10596  0.08734 [-0.3,0.3] [-0.3, 0.3]
1.5 0.10665  0.08735  [-0.3,0.3] [-0.3, 0.3]
1.6 0.10735  0.08737  [-0.3,0.2] [-0.2, 0.3]
13 1.7 0.10597  0.08780  [-0.3,0.1] [-0.2, 0.3]
1.8 0.10659  0.08821 [-0.2,0.2] [-0.2, 0.3]
1.9 0.2 0.10716  0.08860  [-0.2,0.2] [-0.2, 0.3]
0.3 0.10312  0.08741  [-0.2,0.2] [-0.5, 0.3]
0.4 0.10097  0.08740  [-0.2,0.2] [-0.4, 0.4]

0.1 1.3 0.09882  0.08754 [-0.3,0.2] [-0.2,0.4]

1.4 009872  0.08742 [-0.2,0.3] [-0.2,0.3]

1.5 0.09852  0.08740 [-0.2,0.2] [-0.3, 0.3]
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TABLE 3.3: Results of Nu(Rem)f% and Sh(ReI)fé
when K = 0.2, E =02, fo =01, a = 1.4, n = 0.5, N, = 0.2, P, = 1.6,

E.=0.1

N, Lo v 7 Nu(Re,) 2 Sh(Re,)"2 I I,
0.3 0.10503  0.08689  [-0.3,0.2] [-0.3, 0.3]
0.4 0.10478  0.08644 [-0.2, 0.3] [-0.4, 0.3]
0.5 0.10453  0.08600 [-0.2, 0.2] [-0.4, 0.2]
02 1.3 0.10533  0.08795 [-0.3,0.3] [-0.3, 0.3]
1.4 0.10538  0.08850  [-0.3, 0.3] [-0.3, 0.3]
1.5 0.10543  0.08893  [-0.3,0.2] [-0.2, 0.3]
12 0.2 017775  0.08669  [-0.3, 0.1] [-0.2, 0.3]
0.3 0.22928  0.08624 [-0.2,0.2] [-0.5, 0.3]
0.4 0.26719  0.08592 [-0.2,0.2] [-0.4,0.4]

01 02 010358  0.15643 [-0.3,0.2] [-0.2,0.4]

0.3  0.10210 0.21246  [-0.2, 0.3] [-0.2, 0.3]

04 0.10082 021246 [-0.2,0.2] [-0.3, 0.3]
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Micropolar Flow of EMHD

95

0.7

FIGURE 3.18: Influence of 7, on ¢(().

0.104

0.1038

0.1036 &

0.1032 -

0.103 -

Nt=0.5, 0.6, 0.7, 0.8, 0.9 4

0.1028 : :
0.1 0.15 02 0.25

FIGURE 3.19: Influence

0.3 0.35 04 0.45 0.5
Nb

of Nt and Nb on NuwRex—%.



Micropolar Flow of EMHD

0.0894

0.0892 =

0.089

0.0884 |-

0.0882 |-

Nb=0.5, 0.6, 0.7, 0.8, 0.9

0.088
0.1

FI1Gureg 3.20: Influence of Nt and Nb on the Sthez—%.

0.15 0.2

0.25

0.3
Nt

0.35

0.4

0.45

0.5



Chapter 4

The Cattaneo-Christov double
diffusion model analysis of
EMHD micropolar fluid flow

using nonlinear thermal radiation

4.1 Introduction

In this chapter, we extend the flow model discussed in Chapter 3 by including
the impacts of Cattaneo-Christov double diffusion. The reduced system of ODEs
after applying a proper similarity transform is solved numerically. Graphs and
tables describe the behavior of physical quantities such as, Pr, Nb, Nt, Ec, Le,
M, and R etc. Numerical values of skin friction coefficient, Nusselt number and
Sherwood number have also been computed and discussed in this chapter. Tables

and graphs are used to investigate the numerical results produced.

4.2 Problem Formulation

The set of equations describing the flow are as follows:
57
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Ju Ov
B T 4.1
Ox * dy 0 (4.1)
ou  Ou pu+k\ % koG o
- — = — | — EyBy — B 4.2
Yor oy ( p )32y+p<9y 5 (BoBo = Byu) (4.2)
0G oG  ~v*0*°G  k ou
7 = o+ & 4.
“or oy pj32 pj(G+3y)’ 4
ua—T+va—T A auaT—i—v@a—T—l—u@a—T—i—v%a—T—i—Zuv O°T (4.4)
Ox dy "oz oz Oy Oy Ox Jy Oy Ox Oxdy '
+ u2 82T T 82 k aZT + ('LLB[) — Eo) . 1 %7
Ox? 0|~ pC, \ 2y pCh pCp Oy
ENAWNEI oTrdC  Dr (0T
— Dpg
+(p0p)(8y) TPy ey T oy
U@—FU%—’—A U%%—FU@@—FU@@—FU@@—FQUU 0°C (4.5)
Ox oy “ 170z 0x oy Oy Ox Oy Oy Ox Oxdy '
0*C 0*C 0*C D7 0°T
2v v il U 5 =T ‘
+u 2 +v 8y2} Ba2y + T. 0%

The aformentioned set of equations corresponding boundary conditions are

ou
u=ar+ o —i—k——l—k‘G}, V= Uy,
{(u >(9y

ou oT

G=—c2 (L1 -T),
By (8y> Ty = 1) { (4.6)
oC

_DBay hye (Cy = C) at y=0,

u—0, G—=0,T— Ty, C’—)Cooasy—>oo.l

4.3 Conversion of the Model

In this section, we convert the system of equations (4.1)-(4.5) along with the

boundary conditions (4.6) into a unitless form. The following similarity transfor-

mation is employed

¢= — ary[20(Q), u=azf(Q), v=—vavf(C).
\[ f (4.7)
C Cuo
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In the above discussions K, M, f.,, P, a, £, R, E., Ny, Ny and L, are the material
parameter, Hartman number, Suction/injection parameter, Prandtl number, slip
parameter, electric parameter, radiation parameter, Eckert number, thermophore-
sis parameter, Brownian motion parameter and Lewis number respectively. These

quantities are written as follows:

k B2 ) C )
K=-, M2:u, fw = —(av) 2 vy, P,q:u,
p pa k
a Ey 40*T3 u?

—a'u S, E=—2 R=—"_x p_-___ _‘w
a=a “\ﬂ’ 11wBy’ Kk C, (T; — Too)
TD «

N, =~ T(Tf—T), Ny = —DB(Cf—C) Le=2-,
B

hc h T
f\/7 1= ft\/7 R2__ 6)w:T_f~

The complete process for converting equation (4.1)-(4.3), is the same as presented
in Chapter 3. The entire procedure for converting (4.4) into the dimensionless

form has been discussed below

oT

oz (4.8)

u@ U% a’r re\2) 1" 49)
5o+ 5 = [(1(0F) ~ FOS(O) “

Multiplying (4.8) and (4.9), we get

ou ou\ 0T
81) 8"0 i % % , 411
u%ﬂa—y—avf(@“)f(o . (4.11)
or a
I = (Tr = Tuo) 4 [ 0°(C). (4.12)

Multiplying (4.11) and (4.12), we get

(ug— 05 ) G = (1 = T OF (OF6) (4.13

— 0. (4.14)
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PO = (T = ) OO (4.15)
o (8%) =2 (arf(Q)) (~Vauf(0)) - ( (T - To) \/ge’@))
2uv% <6—§) —0. (4.16)

By adding (4.10),(4.13),(4.14),(4.15),(4.16) we get

A u%+v% a—TJr u@+v@ a—T+u282—T+v2a2—T+2uanT
! ox oy ) Ox ox oy ) Oy Ox? dy? 0z0y

Y [ (Ty — To) FOFQOC) + @ (T - Toe) f?«)e"(o]
= N (Ty — T [f<<>f'<<>9’<<> " f2(C)9”(C)}

g [f(@f'(oe'(o s f2<c>e"<<>] . (4.17)

By utilizing (4.17), the extended dimensionless form of the energy equation be-

comes:

Q)1+ (00 = D00 + 1)+ 30 120)

+ PO (Q) Q)+ At (O f(O)f' () + PEM? (f*(n) + E* —2Ef'(())
+AR (0w — 1) 0(C) + 1) (0, — 1) 0*(C) + (1 + K) E.P; (f'(C))°

+ P, [N (n) + Nit2(C)] = 0.

AR ]

N 9//(C) |:1 + ? ((911; — 1) H(C) + 1)3 + A fZ(C)

o) [Prf@) AP () + AR (6u — 1) 0(C) + 1)? (6 — 1) e’<<>]

+ PEM? (f2(C) + E* = 2Ef(Q)) + (1 + K) E.P, (f"(¢))?

+ B [N (Q)6(C) + Ni8()] = 0. (4.18)

0(¢) = - ] o) {Prf(C) FAFOFO)

[1 + 24 (0, — 1) Q) +1)° + Ar £2(0)

+4R (6, — 1) 0(¢) +1)° (6, — 1) 9’(()} + P.EM? (f*(C) + E?
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—2Bf(¢) + (1 + K) E.P, (f"(¢))* + P, [N ()¢ (¢) + Ni0™*(¢)] = 0.
(4.19)

As we have Cattaneo-Christov diffusion model in (4.4), that’s why the new pa-

rameter arises which is given below:
A= a* (Ty — Too) M1,

where \; is Cattaneo-Christov temperature parameter.

The entire procedure for converting (4.5) into the dimensionless form has been

discussed below

oC
o= 0. (4.20)
uGE oS | (1(6P) - 1O, (1.21)

Multiplying (4.20) and (4.21), we get

ov ov\ o0C
oC a "
a \o (Cr—Cx) ¢"(Q). (4.23)
8v (% 3 1 ,
u%—%va—y:awz’f(of (). (4.24)

Multiplying (4.23) and (4.24), we get

ov ov\ 0C 9 / /
(v + 05 ) G = (€5 = C AL OFO), (1.2
“2227(5 = 0. (4.26)
2
oy =@ (€ = C) Q). (4.27)

(4.28)
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By adding (4.22),(4.25),(4.26),(4.27),(4.28) we get

A u@—l—v@ (9_C'+ u@%—v@ @qLuQazC v2820 o°C
2 Ox oy ) Ox Ox oy ) Oy Ox? Oy? Oxdy |

Y [ (Cr—) FOF Q) + a® (Cs — Cu) f2<<)¢"<<>}

e [f<<>f'<<>¢'<<> n f2<<>¢"<<>] . (4.20)

By utilizing (4.29), the extended dimensionless form becomes

¢"(Q) (L+Acf*(Q) + ¢'() A (QF () + PrLef + Negr o,

Ny
1 _ _—1 / / & 1"
= 00 = e |10 Ve OFQ) + L+ 310 (4.30

As, we have used Cattaneo-Christtov diffusion model in (4.5) that’s why the new

parameter arises which is gievn below:

)\C = a(Cf — Coo) )\2,

where A, is Cattaneo-Christov temperature parameter.

The dimentionless form of the proposed flow model is:

" 1 2 17 2 pl / 2
f :m[f — P M - KN - MPE] (4.31)
0" (n) = - 0'(¢) {Prf(o
[1 PR (6, — 1)6(C) + 1 + Ar f?(c*)}
EALFOF(C) + AR (B — 1)8(C) + 1P (B — 1) 9'<<>] REM
(F2(Q) + E* —2Ef'(Q)) (1 + K) E.P, (f"(C))" + P [INy0' ()¢ (€)
+ N:0"%(¢) = 0, (4.32)
1 _ _—1 / / & 1
50 = ey | PO CeSOF OV BLS ]

Now,
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The dimensionless boundary conditions are as follows:

f(0) = fu, J/(0) =1+a(l+K(1=mn))f0), h(0)=—nf"(0),
¢'(0) = =72 (1 = (0)), 0'(0) = = (1= 0(0)), at y=0 (4.34)

f'(y) = 0,h(y) = 0,6(y) = 0,0(y) = 0, as y — oo.

The complete discussion in order to get the expression for dimensionless form of
skin friction coefficient, Nusselt number and Sherwood number has been discussed

in chapter 3.

4.4 Solution Methodology

For solving (4.34) and (4.33) with the associated boundary conditions (3.42), we
use the shooting method. First of all, we need to convert these equations into a

system of first order differential equations.

Let us use the following notations.

0C) =W, () =Wi=W,,  0"()=W"=W,
P(Q)=Ws, () =Wy=Wy,  ¢"(Q)=W5"=W,"

Ay =0, -1, Ay =1+ AW,

1
le 3

{1 F S+ %RA%}

Zy = MPE.P, (f*+ E* = 2Ef") + (1 + K) (f"°) + 4RA, A2W?2

+ Pr(f+MNff"+ Ny¢' + N0,
. _ ARA AW
3 — (Zl)z Y

Z4 = 8RALASWoWg + 8RA2 A W2Ws + PWs (f + M S f”

+ NbW4 + NtWQ + PTWQ (NbW8 + NtW6) .
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. _ ARAAW,
5 — <Z1)2 )

Z = SRAL ASWyWyo + SRATAWEWy + PWio (f + MNf' f" + NyWy + NW,)

+ PTWQ (NbW12 + Nth) .

As a result, the coupled ODEs are converted into the following system of Ist order

differential equation

Wll = WQ, Wl(O) =S,
WQIZZI*Z% Z5(0) = = (1 —s),
W, =Wy, W3(0) = ¢,

, -1
Wi= (14 M\ f?)

+ (Nt/Nb) * (Z1 * ZQ)].

{m (LPof + NS 1)

/

(4.35)

The above initial value problem has been solved by using the RK-4 method. The

missing conditions s and ¢ are choosen very carefully, so that the following condi-

tions must hold

(Wi(s,8))c=ce =0,  (Ws(s,))c=c.c = 0.

(4.36)

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme

OWi(s,t) OWi(s,t)

_ o Os ot
OWs(s,t)  OWs(s,t)
Now, introduce the following notations
@Wl (‘)Wg aWS
— W = We, —2=—W
88 57 as 67 88 77
an E)Wg 8W3

Now,
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As a result of these new notations, the Newton’s iterative scheme gets the form

-1

s s Ws Wy Wi
t t W, Wy | Wi

n+1 n n n

Now, we will get another system of eight 1st order ODE’s after differentiaiting the

above system of four ODE’s of 1st order w.r.t to s and ¢

W5 = W, W5(0) =0,
Wi = 2y % Zy+ Zs % Zy, Ws(0) = m,
Wi =W, W-(0) =0,
-1
Wi = ——— |Ws (L P f + NS f"
8 (1+)\Tf2)[ 6( f tff)
+(Nt/Nb)*(Zl*Z4+Z3*Z2) s Wg(O) :0,
Wy = Wi, Wy(0) =0,
Wiy = Zy * Zg + Zs * Zs, Wi0(0) =0,
Wiy = Wi, Wi1(0) =1,
—1
W/, = ————— | Wis (L.P. Mf !
12 (1+>\Tf2)[ 12 ( fFHXf 1Y)
+(Nt/Nb) *(Zl *Z4—|—Zg*Z2> . le(O) = 2.

The stopping criteria for the Newton’s method is set as:

max | Wi((wo), W3((so) |< €.

where € is a small positive real number.
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4.5 Results and Discussion

The numerical results of the equations in the preceding sections will be discussed
through the graphs and tables in this section. Various important parameters, such
as the material parameter K, suction/injection parameter f,, magnetic parame-
ter M, Prandtl number Pr, radiation parameter R, Lewis number Le, Brownian
motion parameter Nb, thermophoresis parameter Nt, Cattaneo-Christov temper-
ature parameter \;, Cattaneo-Christov concentration parameter \., thermal Biot
number 7, and solutal Biot number ~,, are taken into account when performing
numerical calculations. These parameters have a direct influence on the distri-
bution of velocity, temperature and concentration. Table 4.1 and 4.2 discuss the
effect of significant characteristics of the local Nusselt number N u(Rex)_% and
Sherwood number S h(ReI)’%. The local Nusselt number and Sherwood number
fall by enlarging the Eckert number Ec¢, and the thermophoresis parameter Nt.
The local Nusselt number and Sherwood number mount while enlarging the ra-
diation parameter R, temperature ratio parameter 6,, Prandtl number Pr and
Lewis number Le. In this table, Iy and /4 are the intervals from which the missing

conditions € and ¢ can be chosen.

The effect of slip parameter a on the temperature profile 6(¢) is presented in
Figure 4.1. By rising the values of the slip parameter «, the temperature profile
0(¢) shows an increasing behaviour. The impact of the suction parameter f, on
the temperature profile #(() is presented in Figure 4.2. By increasing the values of
the suction parameter f,,, the temperature profile ¢'(¢) is found to increase. The
impact of the material parameter K on the temperature profile 6(() is presented
in Figure 4.3. Increasing the values of the material parameter K reduces the
temperature profile (). Figure 4.4 represents the impact of the Hartman number
M on the temperature profile (¢). Temperature rises when the Hartman number

M is increased, as shown in Figure.

Figure 4.5 displays the influence of Cattaneo-Christov temperature parameter \;
on the temperature profile 6 (¢). Temperature profile decreases when the Cattaneo-

Christov temperature parameter ); is increased. Figure 4.6 depicts the effect of
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the thermophoresis parameter Nt on the temperature profile #(¢). For the in-
creasing values of the thermophoresis parameter, it is obvious that the thermal
boundary layer thickness and temperature are increased. Figure 4.7 depicts the
effect of the Prandtl number Pr on the temperature profile #(¢). The temperature
of the fluid decreases as the Prandtl number increases due to a thinner boundary

layer thickness and reduced thermal diffusivity.

Figure 4.8 represents the impact of the Brownian motion parameter Nb on the
temperature profile 6(¢). Temperature rises when the Brownian motion parame-
ter Nb is increased, as shown in Figure. Figure 4.9 demonstrates the impact of
the thermal Biot number 7, on the temperature profile 6(¢). We notice that the
enhanced values of the thermal Biot number v; cause a higher energy. Figure
4.10 depicts the effect of increasing Lewis number Le values on the concentra-
tion profile ¢(¢). Because the Lewis number is the ratio of the kinematic viscos-
ity oflorwhiteothe nanofluid to the Brownian diffusion coefficient, increasing the
Lewis number leads to an increase in the viscosity of the fluid, which resists fluid
motion and hence reduces the concentration of nanoparticles. Figure 4.11 depicts

the effect of the thermophoresis parameter Nt on the temperature profile 6(().

Figure 4.12 displays the influence of Eckert number E'c on the concentration profile
¢(¢). Concentration profile increases when the Eckert number is increased. Figure
4.13 displays the influence of Cattaneo-Christov concentration parameter A, on
the temperature profile ¢(¢). Temperature profile decreases when the Cattaneo-

Christov concentration parameter \. is increased.

Figure 4.14 depicts how an increase in the Prandtl number Pr causes a reduction
in the concentration profile ¢(¢). As the Prandtl number increases, the thermal
diusivity decreases, resulting in the low range temperature seen in Figure 4.14.
The effect of Brownian motion parameter Nb on the concentration profile ¢(() is
presented in Figure 4.15. Increasing the values of the Brownian motion parameter
reduces the concentration profile. Figure 4.16 shows the effect of solutal Biot
number v, on the concentration profile ¢(¢). The concentration profiles are greatly

improved for higher solutal Biot number values.
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TABLE 4.1: Results of Nu(Rem)f% and Sh(ReI)fé
when K = 0.2, E = 02, M = 0.1, fo = 0.1, a = 1.4, n = 0.5, N; = 0.2,
Le=12 v =7 =0.1
R 6, P. E. Ny M A NuRes® ShRes?® I I
0.3 0.11851 0.08672 [-0.3,0.2] [-0.3, 0.3]
0.4 0.11901 0.08673 [-0.3,0.2] [-0.3, 0.2]
0.5 1.3 0.11950 0.08674 [-0.3,0.2] [-0.4, 0.2]
0.1 14 0.12128 0.08675 [-0.2, 0.2] [-0.5, 0.3]
1.5 0.12264 0.08677 [-0.1,0.2] [-0.3, 0.3]
1.6 0.12864 0.08878 [-0.3,0.1] [-0.2, 0.1]
1.7 0.10762 0.08719 [-0.2,0.1] [-0.2, 0.1]
1.8 0.1 0.1 0.10819 0.08764 [-0.2,0.1] [-0.2, 0.3]
1.9 0.2 0.98 0.10906 0.08819 [-0.3,0.2] [-0.1, 0.3]
0.3 0.96 0.10662 0.07833 [-0.1,0.2] [-0.1, 0.2]
04 1.2 094 0.1 0.10653 0.06848 [-0.3,0.4] [-0.3,0.2]
1.3 0.98 0.10753 0.08615 [-0.5, 0.4] [-0.3, 0.3]
1.4 0.96 0.10766 0.08724 [-0.4,0.3] [-0.2,0.2]
1.5 0.94 0.10778 0.07812 [-0.3,0.2] [-0.2, 0.1]
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TABLE 4.2: Results of Nu(Rem)f% and Sh(ReI)fé
when K = 0.2, E =02, fo =01, a = 1.4, n = 0.5, N, = 0.2, P, = 1.6,

E.=0.1

No Le A A m 7 NuRe® ShRe;® I, I
0.3 0.10759  0.07938  [0.3,0.2] [-0.3,0.3
0.4 0.10741  0.07656 [0.3,0.2] [0.3,0.2]
0.5 0.10723 007378  [0.3,0.2] [-0.4,0.2)
1.3 0.10776  0.08319  [0.2,0.2] [-0.5, 0.3
1.4 0.10777  0.08403 [0.1,0.2] [0.3,0.3
1.5 0.10778  0.08477 [0.3,0.1] [0.2, 0.1]
0.1 0.2 0.18917  0.07794  [-0.2,0.1] [-0.2, 0.1]
0.98 0.3 025172 0.07485 [-0.3,0.2] [-0.1,0.2]
0.96 0.4 020073 007258 [0.3,0.4] [-0.3,0.2)
0.98 02 010734 014703 [0.5,0.4] [-0.3,0.3
0.96 0.3 010736  0.19930 [-0.4,0.3] [0.2,0.2]

0.94 0.4 010721 0.24259 [-0.3,0.2] [-0.2, 0.1]
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Chapter 5

Conclusion

In this study, a review study of Hussain [30] is conducted and extended by consid-
ering the additional effects of Cattaneo-Christov double diffusion model with the
assumptions of laminar, steady, incompressible, two dimensional, porous stretch-
ing sheet, viscous dissipation, nonlinear thermal radiation, Joule heating with

convective boundary condition.

The obtained system of PDEs is transformed into a system of nonlinear and cou-
pled ODEs by using a suitable similarity transformation. A numerical solution of
the system of ODEs is obtained by employing the shooting method. The math-
ematical inferences are discussed for different physical parameters appearing in
the solution influencing the flow and heat transform. The following noteworthy

points can be drawn from the current investigation.

e The velocity profile decreases while the temperature profile increases as the

value of « rises.

e The velocity profile decreases while the temperature profile increases as the

value of f,, rises.

e As K increases, the velocity profile rises, while the temperature profile de-

creases.
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e The velocity profile decreases while the temperature profile increases as the

value of M rises.

e As the value of ~; rises, the velocity profile increases, whereas the tempera-

ture profile increases.
e The temperature profile increases as R increases in value.

e Rising values of both Nb and Nt reduces the rate of heat transfer on the

surface.
e Mass transfer rate increases for the Nb and decreases for the Nt.

e As the E, value increases, the velocity and temperature profiles are also

increasing.
e The temperature profile falls as 6,, rises.

e As value of P, rises, the energy profile and concentration profile both show

a decreasing trend.

e With an increase in Nb, the concentration profile decreases and the energy

profile increases.
e Le increases as the concentration profile decreases.

e With an increase in Nt, the energy profile and concentration profile both

rise.

e When the Cattaneo-Christov temperature parameter \; is decreased, the

nusselt number decreases and the sherwood number rises.

e The nusselt number increases as the Cattaneo-Christov diffusion parameter

Ac is decreased, whereas the sherwood number drops.
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